Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Insect Biochem Mol Biol ; 167: 104075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278280

RESUMO

Uric acid is the end-product of nitrogen metabolism of the silkworm and other lepidopterans. The accumulation of uric acid particles in the epidermis causes the larval silkworm to appear white and opaque. However, the mechanism of uric acid granule formation is still unclear. Silkworm epidermis color is linked to the genes responsible for uric acid particle formation. We first identified two genes in the Bombyx mori genome that encode subunits of the Bloc-1 (Biogenesis of Lysosome-related Organelles Complex-1) by homology to these genes in other eukaryotes, Bmpali and Bmb1. Mutation in these genes caused a transparent phenotype in the silkworm larvae, and the loss of BmBloc-1 subunit gene Bmcap resulted in the same phenotype. These three genes are highly conserved between human and silkworm. We discovered that Bmpali, Bmcap, and Bmb1 localize in the cytoplasm of BmN cells. Yeast two-hybrid assays demonstrated that the Bmpali physically interacts with both Bmcap and Bmb1. Investigating the roles of Bmpali, Bmb1, and Bmcap is essential for uric acid granule formation understanding in Bombyx mori. These mutants present a valuable silkworm model for studying the biogenesis of lysosome-related organelles (LROs).


Assuntos
Bombyx , Animais , Humanos , Bombyx/genética , Bombyx/metabolismo , Ácido Úrico/metabolismo , Larva/genética , Larva/metabolismo , Epiderme , Mutação
2.
Int J Radiat Oncol Biol Phys ; 117(4): 869-882, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868521

RESUMO

PURPOSE: Adjuvant proton beam therapy (PBT) is increasingly available to patients with breast cancer. It achieves better planned dose distributions than standard photon radiation therapy and therefore may reduce the risks. However, clinical evidence is lacking. METHODS AND MATERIALS: A systematic review of clinical outcomes from studies of adjuvant PBT for early breast cancer published in 2000 to 2022 was undertaken. Early breast cancer was defined as when all detected invasive cancer cells are in the breast or nearby lymph nodes and can be removed surgically. Adverse outcomes were summarized quantitatively, and the prevalence of the most common ones were estimated using meta-analysis. RESULTS: Thirty-two studies (1452 patients) reported clinical outcomes after adjuvant PBT for early breast cancer. Median follow-up ranged from 2 to 59 months. There were no published randomized trials comparing PBT with photon radiation therapy. Scattering PBT was delivered in 7 studies (258 patients) starting 2003 to 2015 and scanning PBT in 22 studies (1041 patients) starting 2000 to 2019. Two studies (123 patients) starting 2011 used both PBT types. For 1 study (30 patients), PBT type was unspecified. Adverse events were less severe after scanning than after scattering PBT. They also varied by clinical target. For partial breast PBT, 498 adverse events were reported (8 studies, 358 patients). None were categorized as severe after scanning PBT. For whole breast or chest wall ± regional lymph nodes PBT, 1344 adverse events were reported (19 studies, 933 patients). After scanning PBT, 4% (44/1026) of events were severe. The most prevalent severe outcome after scanning PBT was dermatitis, which occurred in 5.7% (95% confidence interval, 4.2-7.6) of patients. Other severe adverse outcomes included infection, pain, and pneumonitis (each ≤1%). Of the 141 reconstruction events reported (13 studies, 459 patients), the most prevalent after scanning PBT was prosthetic implant removal (34/181, 19%). CONCLUSIONS: This is a quantitative summary of all published clinical outcomes after adjuvant PBT for early breast cancer. Ongoing randomized trials will provide information on its longer-term safety compared with standard photon radiation therapy.


Assuntos
Neoplasias da Mama , Terapia com Prótons , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Neoplasias da Mama/etiologia , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos
3.
Insect Sci ; 30(5): 1309-1324, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36763354

RESUMO

MicroRNAs (miRNAs) are important regulators of nearly all aspects of biological processes in eukaryotes. During the biogenesis of miRNAs, the RNase III enzyme Dicer processes double-strand precursor miRNAs into mature miRNAs and promotes the assembly of RNA-induced silencing complexes (RISCs). Dicer has been reported to participate in a wide range of physiological processes, including development and immunity, in some insect species. However, the physiological roles of Dicer in lepidopterans remain poorly understood. In this study, we investigated the function of Bombyx mori Dicer1. We first performed sequence alignment and found that the sequence of functional domains of Dicer1 are varied among Lepidoptera, Diptera, Coleoptera, Blattaria, and Orthoptera. Using a binary clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 genome editing approach, we showed that BmDicer1 mutants have arrested development from the 3rd instar into the 4th instar. RNA sequencing analysis indicated that the defects in BmDicer1 mutants are due to dysregulation of genes that encode proteins involved in metabolism, protein degradation, absorption, and renin-angiotensin pathways. Analysis using quantitative real-time polymerase chain reaction showed that mutation of BmDicer1 altered expression of miRNAs and their target genes. Therefore, our study demonstrates the critical roles of BmDicer1 in miRNA biogenesis and larval development in silkworm.


Assuntos
Fenômenos Biológicos , Bombyx , MicroRNAs , Animais , Ribonuclease III/genética , Ribonuclease III/metabolismo , Edição de Genes , MicroRNAs/genética , MicroRNAs/metabolismo
4.
PLoS Genet ; 19(1): e1010600, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634107

RESUMO

In lepidopteran insects, dichotomous spermatogenesis produces eupyrene spermatozoa, which are nucleated, and apyrene spermatozoa, which are anucleated. Both sperm morphs are essential for fertilization, as eupyrene sperm fertilize the egg, and apyrene sperm is necessary for the migration of eupyrene sperm. In Drosophila, Prmt5 acts as a type II arginine methyltransferase that catalyzes the symmetrical dimethylation of arginine residues in the RNA helicase Vasa. Prmt5 is critical for the regulation of spermatogenesis, but Vasa is not. To date, functional genetic studies of spermatogenesis in the lepidopteran model Bombyx mori has been limited. In this study, we engineered mutations in BmPrmt5 and BmVasa through CRISPR/Cas9-based gene editing. Both BmPrmt5 and BmVasa loss-of-function mutants had similar male and female sterility phenotypes. Through immunofluorescence staining analysis, we found that the morphs of sperm from both BmPrmt5 and BmVasa mutants have severe defects, indicating essential roles for both BmPrmt5 and BmVasa in the regulation of spermatogenesis. Mass spectrometry results identified that R35, R54, and R56 of BmVasa were dimethylated in WT while unmethylated in BmPrmt5 mutants. RNA-seq analyses indicate that the defects in spermatogenesis in mutants resulted from reduced expression of the spermatogenesis-related genes, including BmSxl, implying that BmSxl acts downstream of BmPrmt5 and BmVasa to regulate apyrene sperm development. These findings indicate that BmPrmt5 and BmVasa constitute an integral regulatory module essential for spermatogenesis in B. mori.


Assuntos
Bombyx , Animais , Feminino , Masculino , Bombyx/genética , Drosophila , Fertilização , Proteína-Arginina N-Metiltransferases/metabolismo , Sêmen , Espermatogênese/genética , Espermatozoides/metabolismo , RNA Helicases DEAD-box/metabolismo
5.
Insect Biochem Mol Biol ; 151: 103874, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375757

RESUMO

In lepidopteran insects, sperm dimorphism is a remarkable feature, in which males exhibit two different types of sperms. Both sperm morphs are essential for fertilization: Eupyrene sperm carry DNA and fertilize eggs, whereas apyrene sperm, which do not have nuclei, are necessary for transport of eupyrene sperm into eggs. In this study, we showed that the gene BmHen1, which encodes a methyltransferase that modifies piRNAs, is necessary for eupyrene sperm development in the lepidopteran model insect, Bombyx mori. Loss-of-function mutants of BmHen1 of both sexes were sterile. BmHen1 female mutants laid fewer eggs than wild-type females, and the eggs laid had morphological defects. Immunofluorescence analysis of BmHen1 male mutants revealed that nuclei formation in the eupyrene sperm was defective, whereas apyrene sperm were normal. In mice, worms, and flies, the components in piRNA biogenesis pathway play an important role in gonad development; therefore, we constructed mutations in genes encoding core elements in the piRNA biogenesis pathway, Siwi, and BmAgo3. To our surprise, no obvious phenotypes were observed in the male reproduction system in the Siwi and BmAgo3 mutants, which demonstrated that sperm development in B. mori does not depend on piRNAs. As the sperm development phenotype in BmHen1 mutants mimics the phenotype of the BmPnldc1 mutants, we then performed RNA sequencing analysis of sperm bundles from both mutants. We found that the defects in eupyrene sperm resulted from dysregulation of the expression of genes involved in energy metabolism. Taken together, our findings demonstrate the crucial functions of BmHen1 in the development of eupyrene sperm and provide evidence that spermatogenesis in B. mori is PIWI-independent. Our results suggest potential targets for lepidopteran pest control and broaden our knowledge of the reproduction in this order of insects.


Assuntos
Bombyx , Masculino , Feminino , Camundongos , Animais , Bombyx/genética , RNA Interferente Pequeno/metabolismo , Sêmen , Espermatogênese/genética , Espermatozoides/metabolismo
6.
Viruses ; 14(6)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35746591

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes severe disease in silkworms. In a previous study, we demonstrated that by using the CRISPR/Cas9 system to disrupt the BmNPV ie-1 and me53 genes, transgenic silkworms showed resistance to BmNPV infection. Here, we used the same strategy to simultaneously target lef8 and lef9, which are essential for BmNPV replication. A PCR assay confirmed that double-stranded breaks were induced in viral DNA at targeted sequences in BmNPV-infected transgenic silkworms that expressed small guide RNAs (sgRNAs) and Cas9. Bioassays and qPCR showed that replication of BmNPV and mortality were significantly reduced in the transgenic silkworms in comparison with the control groups. Microscopy showed degradation of midgut cells in the BmNPV-infected wild type silkworms, but not in the transgenic silkworms. These results demonstrated that transgenic silkworms using the CRISPR/Cas9 system to disrupt BmNPV lef8 and lef9 genes could successfully prevent BmNPV infection. Our research not only provides more alternative targets for the CRISPR antiviral system, but also aims to provide new ideas for the application of virus infection research and the control of insect pests.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Nucleopoliedrovírus/genética
7.
PLoS Genet ; 18(3): e1010131, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312700

RESUMO

Sperm deliver the male complement of DNA to the ovum, and thus play a key role in sexual reproduction. Accordingly, spermatogenesis has outstanding significance in fields as disparate as infertility treatments and pest-control, making it a broadly interesting and important focus for molecular genetics research in a wide range of species. Here we investigate spermatogenesis in the model lepidopteran insect Bombyx mori (silkworm moth), with particular focus on the gene PMFBP1 (polyamine modulated factor 1 binding protein 1). In humans and mouse, PMFBP1 is essential for spermatogenesis, and mutations of this gene are associated with acephalic spermatozoa, which cause infertility. We identified a B. mori gene labeled as "PMFBP1" in GenBank's RefSeq database and sought to assess its role in spermatogenesis. Like in mammals, the silkworm version of this gene (BmPMFBP1) is specifically expressed in testes. We subsequently generated BmPMFBP1 mutants using a transgenic CRISPR/Cas9 system. Mutant males were sterile while the fertility of mutant females was comparable to wildtype females. In B. mori, spermatogenesis yields two types of sperm, the nucleated fertile eupyrene sperm, and anucleated unfertile apyrene sperm. Mutant males produced abnormal eupyrene sperm bundles but normal apyrene sperm bundles. For eupyrene sperm, nuclei were mislocated and disordered inside the bundles. We also found the BmPMFBP1 deficiency blocked the release of eupyrene sperm bundles from testes to ejaculatory seminalis. We found no obvious abnormalities in the production of apyrene sperm in mutant males, and double-matings with apyrene-deficient sex-lethal mutants rescued the ΔBmPMFBP1 infertility phenotype. These results indicate BmPMFBP1 functions only in eupyrene spermatogenesis, and highlight that distinct genes underlie the development of the two sperm morphs commonly found in Lepidoptera. Bioinformatic analyses suggest PMFBP1 may have evolved independently in lepidoptera and mammals, and that despite the shared name, are likely not homologous genes.


Assuntos
Bombyx , Mariposas , Animais , Bombyx/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Fertilidade/fisiologia , Masculino , Mamíferos , Camundongos , Espermatogênese/genética , Espermatozoides/metabolismo
8.
Insect Sci ; 29(1): 128-138, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33629486

RESUMO

Yolk proteins are the main source of nutrients during embryonic and early larval development in oviparous animals. Therefore, vitellogenesis is crucial for reproduction. The silkworm, Bombyx mori, is a model lepidopteran insect in which there are three yolk proteins: vitellin, 30-kDa protein, and egg-specific protein (Esp). In this study, we explored the gene function of Esp through transgenic clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 technology-mediated mutations in the silkworm. We found that Esp mutation resulted in female sterility but had no effect on male fertility. Female mutants could lay eggs after mating, but the eggs were smaller and lighter colored than those laid by wild-type females. The most important finding is that the eggs laid by female mutants did not hatch. Furthermore, we observed stable inheritance of female sterility caused by Esp mutation through successive generations. Thus, Esp encodes a yolk protein that is crucial for female reproductive success and is a potential target for pest control.


Assuntos
Bombyx , Infertilidade Feminina , Animais , Animais Geneticamente Modificados , Bombyx/genética , Proteínas do Ovo , Feminino , Proteínas de Insetos/genética , Masculino
9.
Insect Sci ; 29(2): 379-387, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34231971

RESUMO

U1 small nuclear ribonucleoproteins (U1 snRNP) associates with 5' splice sites in the form of ribonucleoprotein particles and is highly conserved among species. The physiological functions of U1 snRNP in a lepidopteran model insect Bombyx mori is mostly unknown. Here, we showed that U1 snRNP plays an important role in the development of silkworm. Knockout of U1 snRNP in silkworm showed either delayed or stationary 1st instar larva development compared with the wild-type group. U1 snRNP deletion mutants exhibited abnormal cellular phenotypes with enlarged cell nucleus, scant cytoplasm and enlarged nuclei. RNA-seq analysis revealed that genes involved in metabolic pathway, biosynthesis of secondary metabolites and steroid hormone biosynthesis were significantly affected by U1 snRNP depletion. Taken together, our study suggests that U1 snRNP homeostasis plays an important role in silkworm development.


Assuntos
Bombyx , Animais , Ribonucleoproteína Nuclear Pequena U1/metabolismo
10.
Interface Focus ; 11(6): 20210043, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34956600

RESUMO

Various aspects of our physiology and immune response to pathogens are under 24 h circadian control and its role in clinical and research practice is becoming increasingly recognized. Severe acute respiratory syndrome coronavirus-2, the causative agent of Coronavirus disease 2019 (COVID-19) has affected millions of people to date. Cross-disciplinary approaches and collaborative efforts have led to an unprecedented speed in developing novel therapies and vaccines to tackle the COVID-19 pandemic. Circadian misalignment and sleep disruption have a profound impact on immune function and subsequently on the ability of individuals to combat infections. This review summarizes the evidence on the interplay between circadian biology, sleep and COVID-19 with the aim to identify areas of translational potentials that may inform diagnostic and therapeutic strategies in this pandemic.

11.
Insect Biochem Mol Biol ; 139: 103672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34700022

RESUMO

The silkworm (Bombyx mori) is a domesticated and economically important insect. During the whole growth period, silkworm suffers various pathogen infection. Nearly 80% of silk cocoon crop losses are attributed to viral diseases. The circular double-stranded DNA virus Bombyx mori nuclepolyhedrovirus (BmNPV) is the major viral pathogen responsible for massive silkworm death and huge economic losses in the sericulture industry. Up to now, almost all the new strategies for developing immunity against BmNPV are in laboratory strains because of the lack of transgenic technology in industrial silkworm strains. We previously demonstrated that modification of BmNPV genome DNA with the antivirus transgenic CRISPR/Cas9 system effectively improved the resistance of laboratory silkworm strains to viral pathogens. The industrial strains are monovoltine or bivoltine. It is very difficult to break the diapause before microinjection for genetic transformation. Here, we show that the anti-BmNPV transgenic CRISPR/Cas9 system also works in the industrial silkworm strain Jingsong. In this study, we successfully broke diapause and obtained generation-skipping embryos and constructed two TG Jingsong lines. Both lines exhibited significantly enhanced immunity to BmNPV without significant changes in most of the commercially important traits. These results demonstrate that the construction of TG silkworm lines carrying a heritable immune defense system against BmNPV could be an effective strategy to enhance the resistance of industrial silkworm strains to the most devastating DNA virus. The research opened a window for genetic modification of the important strains from laboratory strains to industrial strains.


Assuntos
Antivirais/farmacologia , Bombyx/genética , Edição de Genes , Nucleopoliedrovírus/efeitos dos fármacos , Animais , Animais Geneticamente Modificados/genética , Sistemas CRISPR-Cas , Feminino , Genoma
12.
Zool Res ; 42(5): 637-649, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34472225

RESUMO

The insect brain is the central part of the neurosecretory system, which controls morphology, physiology, and behavior during the insect's lifecycle. Lepidoptera are holometabolous insects, and their brains develop during the larval period and metamorphosis into the adult form. As the only fully domesticated insect, the Lepidoptera silkworm Bombyx mori experienced changes in larval brain morphology and certain behaviors during the domestication process. Hormonal regulation in insects is a key factor in multiple processes. However, how juvenile hormone (JH) signals regulate brain development in Lepidoptera species, especially in the larval stage, remains elusive. We recently identified the JH receptor Methoprene tolerant 1 ( Met1) as a putative domestication gene. How artificial selection on Met1 impacts brain and behavioral domestication is another important issue addressing Darwin's theory on domestication. Here, CRISPR/Cas9-mediated knockout of Bombyx Met1 caused developmental retardation in the brain, unlike precocious pupation of the cuticle. At the whole transcriptome level, the ecdysteroid (20-hydroxyecdysone, 20E) signaling and downstream pathways were overactivated in the mutant cuticle but not in the brain. Pathways related to cell proliferation and specialization processes, such as extracellular matrix (ECM)-receptor interaction and tyrosine metabolism pathways, were suppressed in the brain. Molecular evolutionary analysis and in vitro assay identified an amino acid replacement located in a novel motif under positive selection in B. mori, which decreased transcriptional binding activity. The B. mori MET1 protein showed a changed structure and dynamic features, as well as a weakened co-expression gene network, compared with B. mandarina. Based on comparative transcriptomic analyses, we proposed a pathway downstream of JH signaling (i.e., tyrosine metabolism pathway) that likely contributed to silkworm larval brain development and domestication and highlighted the importance of the biogenic amine system in larval evolution during silkworm domestication.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bombyx/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Insetos/genética , Tegumento Comum/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , Conformação Proteica
13.
14.
PLoS Genet ; 16(11): e1009194, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137136

RESUMO

Sex determination pathways are astoundingly diverse in insects. For instance, the silk moth Bombyx mori uniquely use various components of the piRNA pathway to produce the Fem signal for specification of the female fate. In this study, we identified BmGTSF1 as a novel piRNA factor which participates in B. mori sex determination. We found that BmGtsf1 has a distinct expression pattern compared to Drosophila and mouse. CRISPR/Cas9 induced mutation in BmGtsf1 resulted in partial sex reversal in genotypically female animals by shifting expression of the downstream targets BmMasc and Bmdsx to the male pattern. As levels of Fem piRNAs were substantially reduced in female mutants, we concluded that BmGtsf1 plays a critical role in the biogenesis of the feminizing signal. We also demonstrated that BmGTSF1 physically interacted with BmSIWI, a protein previously reported to be involved in female sex determination, indicating BmGTSF1 function as the cofactor of BmSIWI. BmGtsf1 mutation resulted in piRNA pathway dysregulation, including piRNA biogenesis defects and transposon derepression, suggesting BmGtsf1 is also a piRNA factor in the silkworm. Furthermore, we found that BmGtsf1 mutation leads to gametogenesis defects in both male and female. Our data suggested that BmGtsf1 is a new component involved in the sex determination pathway in B. mori.


Assuntos
Bombyx/fisiologia , Elementos de DNA Transponíveis/genética , Proteínas de Insetos/metabolismo , Proteínas Nucleares/metabolismo , Processos de Determinação Sexual/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Masculino , Mutação , Proteínas Nucleares/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
15.
Cell Discov ; 6: 60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963806

RESUMO

Sperm, which have a vital role in sexual reproduction in the animal kingdom, can display heteromorphism in some species. The regulation of sperm dichotomy remains a longstanding puzzle even though the phenomenon has been widely documented for over a century. Here we use Bombyx mori as a model to study a form of sperm dimorphism (eupyrene and apyrene sperm), which is nearly universal among Lepidoptera. We demonstrate that B. mori Sex-lethal (BmSxl) is crucial for apyrene sperm development, and that B. mori poly(A)-specific ribonuclease-like domain-containing 1 (BmPnldc1) is required for eupyrene sperm development. BmSXL is distributed in the nuclei and cytoplasm of somatic cyst cells in a mesh-like pattern and in the cytoplasm of germ cells enclosed in spermatocysts and sperm bundles. Cytological analyses of dimorphic sperm in BmSxl mutants (∆BmSxl) showed deficient apyrene sperm with abnormal nuclei, as well as loss of motility associated with malformed mitochondrial derivatives. We define the crucial function of apyrene sperm in the process of fertilization as assisting the migration of eupyrene spermatozoa from bursa copulatrix to spermatheca. By contrast, BmPnldc1 deficiency (∆BmPnldc1) caused eupyrene sperm abnormalities and impaired the release of eupyrene sperm bundles during spermiation. Although apyrene or eupyrene sperm defects impaired fertility of the mutated males, double copulation of a wild-type female with ∆BmSxl and ∆BmPnldc1 males could rescue the sterility phenotypes induced by single copulation with either gene-deficient male. Our findings demonstrate the crucial functions of BmSxl and BmPnldc1 in the development of sperm dimorphism and the indispensable roles of nonfertile apyrene sperm in fertilization.

16.
PLoS Genet ; 16(6): e1008622, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32520935

RESUMO

Insect courtship and mating depend on integration of olfactory, visual, and tactile cues. Compared to other insects, Bombyx mori, the domesticated silkworm, has relatively simple sexual behaviors as it cannot fly. Here by using CRISPR/Cas9 and electrophysiological techniques we found that courtship and mating behaviors are regulated in male silk moths by mutating genes in the sex determination cascade belonging to two conserved pathways. Loss of Bmdsx gene expression significantly reduced the peripheral perception of the major pheromone component bombykol by reducing expression of the product of the BmOR1 gene which completely blocked courtship in adult males. Interestingly, we found that mating behavior was regulated independently by another sexual differentiation gene, Bmfru. Loss of Bmfru completely blocked mating, but males displayed normal courtship behavior. Lack of Bmfru expression significantly reduced the perception of the minor pheromone component bombykal due to the down regulation of BmOR3 expression; further, functional analysis revealed that loss of the product of BmOR3 played a key role in terminating male mating behavior. Our results suggest that Bmdsx and Bmfru are at the base of the two primary pathways that regulate olfactory-based sexual behavior.


Assuntos
Bombyx/genética , Genes de Insetos , Preferência de Acasalamento Animal , Atrativos Sexuais/metabolismo , Processos de Determinação Sexual/genética , Animais , Bombyx/metabolismo , Bombyx/fisiologia , Feminino , Masculino , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Atrativos Sexuais/genética , Olfato
17.
RNA Biol ; 17(9): 1342-1351, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32401141

RESUMO

microRNAs (miRNA) are small non-coding RNAs that modulate the myriad biological activities by targeting genes, and many studies showed that miRNAs played a pivotal role in insect development. Here, we find that Bm-miRNA (miR-34) controls larval growth and wing morphology by targeting BmE74 and BmCPG4. Overexpression of miR-34 in the whole body caused a smaller body size, partially displays deformed wings and venation defects in adults. Ablation of miR-34 by transgenic CRISPR/Cas9 technology resulted in a severe developmental delay during the larval stage. Moreover, we confirmed that miR-34 directly targeted BmE74 and BmCPG4 by using a dual luciferase reporter assay in HEK293T cells. Remarkably, loss-of-function of BmCPG4 caused wing defects, which was similar to the phenotype of miR-34 overexpression in animals. In addition, our analysis revealed that ecdysone strongly inhibited miR-34 expression in vivo. Taken together, our study identifies miR-34 as a modulator that regulates larval growth and wing morphogenesis by directly modulating ecdysone signalling and cuticle protein in Bombyx mori.


Assuntos
Bombyx/embriologia , Bombyx/genética , Ecdisona/metabolismo , MicroRNAs/genética , Morfogênese/genética , Transdução de Sinais , Asas de Animais/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Larva , Mutação com Perda de Função , Organogênese/genética
18.
Insect Biochem Mol Biol ; 116: 103243, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541694

RESUMO

Sterile insect technology (SIT) is an environmentally friendly method for pest control. As part of our efforts to develop a strategy that results in engineered male-sterile strains with minimum effects on viability and mating competition, we used CRISPR/Cas9 technology to disrupt Ser2, which encodes a seminal fluid protein, in the model lepidopteran insect, Bombyx mori, and an important agricultural pest, Plutella xylostella. Disruption of Ser2 resulted in dominant heritable male sterility. Wild-type females mated with Ser2-deficient males laid eggs normally, but the eggs did not hatch. We detected no differences in other reproductive behaviors in the mutant males. These results support the conclusion that Ser2 gene is necessary for male reproductive success in diverse lepidopterans. Targeting Ser2 gene has the potential to form the basis for a new strategy for pest control.


Assuntos
Proteínas de Insetos/genética , Mariposas/fisiologia , Serina Proteases/genética , Animais , Bombyx/genética , Bombyx/fisiologia , Sistemas CRISPR-Cas , Infertilidade Masculina/genética , Proteínas de Insetos/metabolismo , Masculino , Mariposas/genética , Mutação , Reprodução/genética , Serina Proteases/metabolismo
19.
Insect Sci ; 27(4): 646-654, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31131541

RESUMO

MicroRNAs (miRNAs) are a class of short, non-coding transcripts that bind to 3'-untranslated regions to trigger messenger RNA degradation or translational inhibition. Here we explored how miRNAs regulate sex determination in Bombyx mori, a lepidopteran model insect. Genes known to be involved in sex determination, BmPSI, Bmdsx, and BmMasc, are predicted targets of the species-specific miR-2738. Using a dual luciferase reporter assay in HEK293T cells, we confirmed that miR-2738 suppressed transcription of BmPSI, Bmdsx, and BmMasc. The levels of BmPSI and BmMasc were significantly down-regulated in B. mori miR-2738 overexpression. In contrast, the genetic disruption of miR-2738 using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 transgenic system increased the levels of BmPSI and BmMasc transcripts, whereas splicing of Bmdsx was unaltered by miR-2738 depletion or overexpression. Taken together, this study implicates miR-2738 as a minor regulator of sex determination genes in the silkworm.


Assuntos
Bombyx/crescimento & desenvolvimento , Bombyx/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Processos de Determinação Sexual/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Sequência de Bases , Bombyx/metabolismo , Células HEK293 , Humanos , MicroRNAs/metabolismo
20.
Pest Manag Sci ; 76(4): 1245-1255, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31595658

RESUMO

BACKGROUND: Precise regulation of oogenesis is crucial to female reproduction. Seventy percent of pests belong to lepidopteran species, so it would be interesting to explore the highly conserved genes involved in oogenesis that do not affect growth and development in the lepidopteran model, Bombyx mori. This can provide potential target genes for pest control and promote the development of insect sterility technology. RESULTS: In lepidopteran species, ovarian serine protease (Osp), which encodes a member of the serine protease family, is essential for oogenesis. In this study, we used transgenic CRISPR/Cas9 technology to obtain Osp mutants in the model lepidopteran insect Bombyx mori and in the lepidopteran agricultural pest Spodoptera litura. Sequence analysis of mutants revealed an array of deletions in Osp loci in both species. We found that the deletion of Osp resulted in female sterility, whereas male fertility was not affected. Although B. mori and S. litura mutant females mated normally, they laid fewer eggs than wild-type females and eggs did not hatch. CONCLUSION: Osp is crucial for female reproductive success in two species of Lepidoptera. As the Osp gene is highly conserved in insect species, this gene is a potential molecular target for genetic-based pest management. © 2019 Society of Chemical Industry.


Assuntos
Bombyx , Animais , Feminino , Proteínas de Insetos , Masculino , Serina , Serina Proteases , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...